Cooperative regulation by G proteins and Na+ of neuronal GIRK2 K+ channels

نویسندگان

  • Weiwei Wang
  • Kouki K Touhara
  • Keiko Weir
  • Bruce P Bean
  • Roderick MacKinnon
چکیده

G protein gated inward rectifier K(+) (GIRK) channels open and thereby silence cellular electrical activity when inhibitory G protein coupled receptors (GPCRs) are stimulated. Here we describe an assay to measure neuronal GIRK2 activity as a function of membrane-anchored G protein concentration. Using this assay we show that four Gβγ subunits bind cooperatively to open GIRK2, and that intracellular Na(+) - which enters neurons during action potentials - further amplifies opening mostly by increasing Gβγ affinity. A Na(+) amplification function is characterized and used to estimate the concentration of Gβγ subunits that appear in the membrane of mouse dopamine neurons when GABAB receptors are stimulated. We conclude that GIRK2, through its dual responsiveness to Gβγ and Na(+), mediates a form of neuronal inhibition that is amplifiable in the setting of excess electrical activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal Structure of the Mammalian GIRK2 K+ Channel and Gating Regulation by G Proteins, PIP2, and Sodium

G protein-gated K(+) channels (Kir3.1-Kir3.4) control electrical excitability in many different cells. Among their functions relevant to human physiology and disease, they regulate the heart rate and govern a wide range of neuronal activities. Here, we present the first crystal structures of a G protein-gated K(+) channel. By comparing the wild-type structure to that of a constitutively active ...

متن کامل

Quantitative analysis of mammalian GIRK2 channel regulation by G proteins, the signaling lipid PIP2 and Na+ in a reconstituted system

GIRK channels control spike frequency in atrial pacemaker cells and inhibitory potentials in neurons. By directly responding to G proteins, PIP2 and Na(+), GIRK is under the control of multiple signaling pathways. In this study, the mammalian GIRK2 channel has been purified and reconstituted in planar lipid membranes and effects of Gα, Gβγ, PIP2 and Na(+) analyzed. Gβγ and PIP2 must be present ...

متن کامل

Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2.

G protein-gated, inwardly rectifying K+ channels (GIRK) are effectors of G protein-coupled receptors for neurotransmitters and hormones and may play an important role in the regulation of neuronal excitability. GIRK channels may be important in neurodevelopment, as suggested by the recent finding that a point mutation in the pore region of GIRK2 (G156S) is responsible for the weaver (wv) phenot...

متن کامل

Functional Effects of the Mouse weaver Mutation on G Protein–Gated Inwardly Rectifying K+ Channels

The weaver mutation corresponds to a substitution of glycine to serine in the H5 region of a G protein-gated inwardly rectifying K+ channel gene (GIRK2). By studying mutant GIRK2 weaver homomultimeric channels and heteromultimeric channels comprised of GIRK2 weaver and GIRK1 in Xenopus oocytes, we found that GIRK2 weaver homomultimeric channels lose their selectivity for K+ ions, giving rise to...

متن کامل

Evolving potassium channels by means of yeast selection reveals structural elements important for selectivity.

Potassium channels are widely distributed. To serve their physiological functions, such as neuronal signaling, control of insulin release, and regulation of heart rate and blood flow, it is essential that K+ channels allow K+ but not the smaller and more abundant Na+ ions to go through. The narrowest part of the channel pore, the selectivity filter formed by backbone carbonyls of the GYG-contai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016